CERES Surface and Atmospheric Radiation Budget (SARB)

Overview part of CERES/ARM Science Team Meeting Nov. 2004

T. P. Charlock (NASA LaRC)

Fred G. Rose (AS&M) - algorithm

David A. Rutan (AS&M) - CAVE validation and calculation facility

Zhonghai Jin (AS&M) - coupled radiative transfer

Lisa H. Coleman, Thomas E. Caldwell, Scott Zentz (SAIC)

- Data Management Team

Seiji Kato (H.U.) - modifications to operational radiative transfer

David Fillmore & Bill Collins (NCAR) - MATCH

Wenying Su (H.U.)- surface UV algorithm & balloon broadband

CRS footprint [SYN gridded] product has [will have] fluxes

at surface, 500-200-70 hPa, and TOA, cloud & aerosol forcing

[and surface UVA, UVB]

FSW_Ed2A Terra FM1 May 2000 , Atm. Flux Convergence LW Cloud Forced

Mean = -0.83Stddev = 21.88 Count = 43938

FSW_Ed2A Terra FM1 May 2000, Atm, Flux Convergence LW Cloud Forced

Mean = -0.83 Stddev = 21.88 Count = 43938

Fri Sep 17 13:59:24 2004

Size 40% Left crop L 4.20" Right crop L 1.15" R 3.65"

CERES Surface and Atmospheric Radiation Budget (SARB)

CRS (footprint)/SYN (gridded) product has fluxes at surface, 500-200-70 hPa, & TOA, cloud & aerosol forcing

Inputs: SSF (TOA flux, clouds, aerosols), NWP meteorology, MATCH, aerosol assimilation, NCEP O3
Langley Fu-Liou 2 stream SW
2/4 LW with Kratz-Rose window
Kato gamma-weighted τ

Adjustments (tuning) to PW, UTH, skin T, aerosol τ, cloud LWP/IWP, cloud fraction,& cloud height

A priori uncertainties assigned to each adjustable parameter

Mininum sum of squares of normalized differences between

- (1) computed TOA fluxes & adjusted inputs and
- (2) observed TOA fluxes & initial inputs

Viewing geometry of Surface and Atmophere Radiation Budget (SARB)

Input data for computing SARB vertical profile at ~2,000,000 footprints/day

Absolutely no ground-based radiometric data are used for input

TOA 70 hPa 200 hPa 500 hPa **Surface** ~20-50km Terra

CERES CRS: Surface and Atmosphere Radiation Budget (SARB) Product

Tuned fluxes at all 5 levels
All-sky & Clear-sky, Up & Down,
SW and LW

Surface & TOA also have Untuned fluxes
Fluxes with aerosols
Pristine fluxes (no aerosols)

Aerosol forcing for all-sky & clear-sky

Tuning does NOT yield a perfect match to TOA observations.

Parameters adjusted when clear: Skin temperature, aerosol AOT, precipitable water (PW)

Parameters adjusted when cloudy: LWP/IWP, cloud top temperature, cloud fractional area within footprint

CERES SARB Aerosol Optical Thickness (τ_{λ}): Daylight on 15 July 2001

ORANGE: Instantaneous MODIS (MOD04) Kaufman algorithm

PURPLE: Time interpolation from MODIS Daily Gridded Product

BLUE: MATCH (which uses MODIS as one input)

Aerosol types from MATCH on 15 July 2001

Model for Atmospheric Transport and Chemistry (MATCH; Fillmore, Collins, Rasch) generates, transports, assimilates MODIS au_{λ} , and removes species with wet &dry processes

As such models advance, application to ocean research may include are rosol deposition to ocean surface and adjustment of atmospheric correction τ_{λ} to satellite Chl

Coupled Ocean Atmosphere Radiative Transfer (COART)

Explicit scattering in both air & sea (i.e., aerosols and phytoplankon)

Jin, Charlock, and Rutledge, 2002: Analysis of broadband solar radiation and albedo over the ocean surface at COVE. J. Ocean. Atmos. Tech., Vol 19, pp. 1585-1601.

COART look up table (LUT) for flux calculation

f(wind speed, cosSZA, tau)

wind = 5m/s aerosol tau = 0.1

TOA CRS vs. SARB (All Sky) 21-06-04

Similar plots are made for a number of cloud and surface conditions.

y axes: model

x axes: observations

color: population

Surface sites in CAVE surface validation program

SARB Surface Flux Validation

(Terra, 20 Months of CRS Ed2A)

Downward Tuned S	SFC Aerosol Forcing						
	All Sky		Clea	r Sky	Clear-F	SW	
	LW SW		LW	SW	LW	SW	CNA*
ARM/SGP	-9	+8	-10	+4	+1	-19	-19
Island Sites	-4	+33	-4	+20	+1	-14	-7
Polar Sites	-2	+10	-7	-4	+1	-6	-4
SURFRAD	-6	+13	-8	+5	+1	-17	-17
Coastal	+1	+15	+2	-3	+2	-23	-16
Validation Sites	-5 (24)	+13 (93)	-9 (18)	-3 (34)	+3	-16	-10

Upward Tuned To	TOA Aerosol Forcing						
	All Sky		Clea	r Sky	Clear-P	SW	
	LW SW		LW	SW	LW	SW	CNA*
ARM/SGP	+1	-0	-0	-0	-1	+5	+4
Island Sites	-0	+4	-3	+3	-1	+6	+4
Polar Sites	+2	+2	-1	+1	-0	-0	+1
SURFRAD	+1	-0	-1	+0	-1	+6	+5
Coastal	+1	+9	-0	+1	-1	+20	+9
Validation Sites	+1(5)	+2 (12)	-1(3)	+1(3)	-1	+1	+2

^{*} Difference model run with clouds and aerosols and model run with clouds, no aerosols.

Mismatch of surface albedo and surface insolation in SARB.

We retrieve surface albedo for clear CERES footprints ~10-100km

Surface insolation measured at a point is affected by surface albedo.

Clear sky: surface albedo impact on insolation is small.

Relevant albedo scale is ~10km

500 hPa at ~6km

50% of Rayleigh scattering to surface comes from above 5 km

Cloudy sky: surface albedo impact on insolation can be large. Relevant albedo scale is ~2 X cloud base height.

Not a problem at COVE sea platform, where we know the surface albedo.

COVE

CERES Ocean
Validation Experiment

Rigid sea platform
Continuous
Long-term
Well calibrated
AERONET aerosol
NOAA wind and waves
BSRN surface
radiation
looks DOWN at sea

At COVE:
SW up (time mean)
approximately equals
SW up (space mean)

Various short/medium term measurements: SP1A for upwelling SW spectral radiance Ocean optics (ODU)

Surface Insolation at COVE Year 2001 (Terra CRS Edition 2A)

	Observed Wm-2	Bias Wm-2	Samples		
All-sky	536	-8	214		
Clear-sky	662	-2	14		

Bias = (Retrieved - Observed)

CAVE Homepage

http://www-cave.larc.nasa.gov/cave

CLAMS: Chesapeake Lighthouse and Aircraft Measurements for Satellites July 2001 CERES-MODIS-MISR-GACP

Comparison of modeled and aircraft measured spectral albedo over COVE.

Broadband ocean albedo (color contours) versus wind speed (vertical axes) and cosSZA (horizontal axes) using the LUT.

Change in Tegen and Lacis dust properties

- Significantly less absorption

- More backward scatter in visible.

CAVE Validation, Edition 2a, 2b Summary

Instantaneous All Sky Mean(RMS) All Wm ⁻²												
	LW Up TOA SW Up TOA		LW Down Sfc		SW Down Sfc		LW Up Sfc		SW Up Sfc			
	Untuned	Tuned	Untuned	Tuned	Untuned	Tuned	Untuned	Tuned	Untuned	Tuned	Untuned	Tuned
Edition 2A	+1(8)	+1(5)	+4(22)	+2(9)	-4(25)	-4(25)	+12(85)	+13(87)	-0(26)	-0(25)	-12(45)	-12(45)
Edition 2B	+1(8)	+1(5)	+6(22)	+2(8)	-4(25)	-5(25)	+13(85)	+17(87)	-4(34)	-4(33)	-13(45)	-13(45)
Instantaneous Clear Sky Mean(RMS) All Wm ⁻² [clear - imager CF = 0.0]												
	LW Up TOA SW Up TOA		LW Down Sfc SW Down Sfc		wn Sfc	LW Up Sfc		SW Up Sfc				
	Untuned	Tuned	Untuned	Tuned	Untuned	Tuned	Untuned	Tuned	Untuned	Tuned	Untuned	Tuned
Edition 2A	-1(6)	-1(3)	+3(8)	+1(3)	-9(19)	-9(19)	+1(32)	+1(31)	+0(22)	+1(24)	-11(24)	-10(24)
Edition 2B	-1(5)	-1(3)	-1(6)	-0(2)	-10(19)	-10(19)	+7(27)	+8(27)	+0(23)	+1(24)	-13(25)	-13(24)
Instantaneous Overcast Sky Mean(RMS) All Wm ⁻² [overcast - imager CF = 1.0]												
	LW Up	TOA	SW Up	TOA	LW Do	wn Sfc	SW Do	wn Sfc	LW U	p Sfc	SW U	p Sfc
	Untuned	Tuned	Untuned	Tuned	Untuned	Tuned	Untuned	Tuned	Untuned	Tuned	Untuned	Tuned
Edition 2A	+0(9)	+1(4)	+10(31)	+1(12)	-5(24)	-6(25)	+15(90)	+25(97)	+6(24)	+6(24)	-11(40)	-9(40)
Edition 2B	+1(9)	+1(4)	+12(29)	+2(9)	-5(24)	-6(25)	+17(90)	+30(96)	+1(39)	+1(39)	-10(41)	-8(41)

LW – Day and night footprints.

SW – Day time only (not a 24 hour average).

Change in Surface Albedo

Surface Albedo Mar 2000 Ed2B-Ed2A

SARB vs. MODIS Albedo Jul 2001

Click "Balloon" from CAVE URL

Wenying Su's
deployement of
Haeffelin
modified
radiometers

Failed launch from Alice Springs, Australia